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Introduction

Single-user Open-loop (infinite number of users) MIMO (Nr ≥ 2)
compound (worst-case) setup

Integer-forcing as a practical scheme

Upper and lower bounds of integer-forcing on outage probability

Extension 1: Symmetric-rate (statistical) Nr × 2 (Nr ≥ 2) Rayleigh
MAC with minimal feedback

Extension 2: lower bound of symmetric-rate (statistical) 1× 2
Rayleigh MAC with minimal feedback
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Introduction

The Single-User Multiple-Input Multiple-Output (MIMO) Gaussian
channel has been the focus of extensive research

y c = Hcxc + zc ,

xc ∈ C
Nt is the channel input vector

yc ∈ C
Nr is the channel output vector

Hc is an Nr × Nt complex channel matrix

→ Fixed over entire block length

zc ∼ CSCN (0, I)

Power constraint: E(xH
c
xc) ≤ Nt · SNR
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Introduction

The MIMO Gaussian broadcast channel has also been widely studied
for well over a decade now:

y i
c = Hi

cxc + z i
c

Private (only) Messages vs. Common (only) Messages

◮ Capacity is known for both scenarios X
◮ Practical schemes?

⋆ Private Message X (DPC: Tomlinson...)
⋆ Common Message?

=⇒ Single user: SVD or QR+SIC
=⇒ Two users: Joint triangularization (Khina et al., ’12)
=⇒ Moderate # of users: non-optimal extensions (Khina et al., ’12)
=⇒ Infinite # of users (knowing only WI-MI): Approximate joint
triangularization is not very good =⇒ The focus of this talk
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Motivation for Compound MIMO Setting

We’re interested a scheme that is:
◮ Practical

⋆ Linear complexity in the block length
⋆ Uses off-the-shelf SISO codes

◮ Has provable good performance guarantees
◮ Universal: Is good for all channels with same WI-MI (compound

channel setting), i.e., Hc ∈ H(CWI)

Universal =⇒ needs to deal with DoF mismatch

Transmitter User 1User 2
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Candidate Scheme for Compound MIMO Setting: Integer
Forcing

Equalization scheme introduced by Zhan ’14, et. al.
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Candidate Scheme for Compound MIMO Setting: Integer
Forcing

What is already known?

Ordentlich & Erez ’15: using algebraic space-time precoding

A linear Non-Vanishing Determinant (NVD) precoder achieves the
mutual information up to a constant gap for any channel
Guaranteed gap to capacity is quite large

D. ’17: using random (Haar measure) precoded (space-only
precoding)

Bound on the outage probability depends only on the gap-to-capacity
and number of antennas
Empirical performance still much better than the bound

Can we obtain a lower bound?
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Lower Bound on the Outage of Precoded IF

How does IF behaves compared to ML?

Simple bound
◮ Consider same (random) precoded but (independent) Gaussian

codebooks of equal rate
◮ Since codebooks are independent can be viewed as MIMO MAC

MIMO MAC bound [Zhan et al. ’14]

Let HS denote the submatrix of Heff = HcPc formed by taking the
columns with indices in S ⊆ {1, 2, ...,Nt}
For ML decoder, the maximal achievable symmetric rate

Csym = min
S⊆{1,2,...,Nt}

Nt

|S | log det
(

INr
+HSH

H
S

)
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Explicit Expressions for Nr × 2

Theorem 2 (new converse)

For a randomly precoded Nr × 2 compound MIMO channel with
white-input mutual information C and Nr ≥ 2, we have

PWC
out,Csym

(C ,∆C ) = 1−
√

1− 2−∆C ≈ 1

2
2−∆C

Theorem 1 (achievable) - D. ’17

For any Nr × 2 complex channel Hc with white-input mutual information
C > 1, i.e., D ∈ D(C ), and for randomly precoded Pc (which induces a
real-valued precoding matrix P), we have

PWC
out,IF−SIC (C ,∆C ) ≤ 81π22−∆C ,

for ∆C > 1

Same exponent, very different constant
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Lower and upper bounds for Nr × 2 MIMO channel
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Theorem 1 (achievable)
Empirical IF
Theorem 2 (converse)

Figure: Theorem 1 and Theorem 2 for Nr × 2 MIMO channels (Nr ≥ 2) with
mutual information C = 14.
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Sketch Of Proof

For Nr × 2 the SVD of the precoded channel

Heff = HcPc = Uc

[√
ρ1 0 0 · · · 0
0

√
ρ2 0 · · · 0

]H

VH
c Pc ,

Pc is drawn from the CUE (Haar measure) =⇒ VH
c PC has same

probability as Pc

Taking k columns from HcPc equals to multiplying Hc with k

columns of Pc

For Nr × 2, Csym = min (C ({1}),C ({2}),C)

C ({1}) = 2 log

(

1 +

[

P1,1

P2,1

]H [

ρ1 0
0 ρ2

] [

P1,1

P2,1

]

)

= 2 log
(

1 + ρ1P
H
1,1P1,1 + ρ2P

H
2,1P2,1

)
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Sketch Of Proof

P1,1 and P2,1 form a vector in a unitary matrix=⇒
PH
1,1P1,1 + PH

2,1P2,1 = 1

Pr (C ({1}) < R |C ) = Pr

(

|P1,1|2 < 2R/2−1−ρ2
ρ1−ρ2

)

Narula et al. ’09 - squared norm of an entry in 2× 2 unitary matrix
drawn from the CUE is uniformly distributed over [0, 1]

Recall ρ1 =
2C

1+ρ2
− 1 we have

(∗) Pr (C ({1}) < R)|C ) =
2R/2 − 1− ρ2
2C

1+ρ2
− 1− ρ2

By symmetry Pr (C ({2}) < R)) = Pr (C ({1}) < R))

We show that the events {C ({1}) < R} and {C ({2}) < R} are
disjoint
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Sketch Of Proof

We thus have

PWC
out,Csym

(C,R) = max
0≤ρ2≤2C/2−1

2 · 2
R/2 − 1− ρ2
2C

1+ρ2
− 1− ρ2

.

The derivative of the expression that is maximized with respect to ρ2
is zero for (and only for)

ρ∗2 = 2−R/2−1
(

2C+1 − 2R/2+1 − 2
√

22C − 2C+R

)

,

We get

PWC
out,Csym

(C,∆C ) = 1−
√

1− 2−∆C .
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Performance Extensions

Explicit expression can be calculated for Nr × 2 when random
space-time precoding is applied

This extension relies on the fact that the singular values of a
sub-matrix of a unitary matrix have Jacobi distribution
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Setup Extensions

User 1

Data stream 1

Data stream 2

User 1

Data stream 1

Data stream 2

User 2

User 1

Data stream 1

Data stream 2

User 2

y1

y1

y1
yNr

yNr

P

Single-user Nr × 2
with random precoding

Nr × 2 Rayleigh MAC
with symmetric rates

1× 2 Rayleigh MAC
with symmetric rates

We stick to Nt = 2
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What is so special about i.i.d. Rayleigh fading?

Yes, it’s widely used, but this is not the point...

What is crucial for our purposes is that the precoding matrix P is
built into the ensemble:

◮ H = UΣVH

◮ Edelman & Rao ’04 - both U and V belong to the CUE (Haar measure)

Symmetric rate Rayleigh MAC Nr × 2:
◮ What changes?
◮ Now we don’t minimize over worst case (ρ1, ρ2) pair, rather needs to

take the expectation

Symmetric rate Rayleigh MAC 1× 2:
◮ All that is left from the Rayleigh statistics (given the capacity) is the

random matrix P
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Rayleigh MAC with Symmetric Rates

MAC: y =

Nt
∑

i=1

hixi + z
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Rayleigh MAC with Symmetric Rates

MAC: y =

Nt
∑

i=1

hixi + z

CSI at Rx

Equal average transmission power per antenna: P = 1

z ∼ CN (0, 1)

hi ∼
√
SNR · CN (0, 1) and i.i.d.
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Rayleigh MAC with Symmetric Rates

Capacity region:
∑

i∈S

Ri ≤ log

(

1 +
∑

i∈S

|hi |2
)

for all

S ⊆ {1, 2, . . . ,Nt}

Symmetric-rate capacity: Csym = min
S⊆{1,2,...,Nt}

Nt

|S | log
(

1 +
∑

i∈S

|hi |2
)

Sum-capacity Csum = log

(

1 +

Nt
∑

i=1

|hi |2
)
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Simple MAC Transmission Protocol

Theorem 3

For a 1× 2 Rayleigh MAC with sum capacity Csum:

Pr(Csym < R |Csum) = 2 · 2R/2 − 1

2Csum − 1
; 0 ≤ R≤ C sum

The chance of achieving Csum can be calculated. For example:

Pr(Csym = Csum|Csum = 2) = 1− 2 · 22/2−1
22−1

= 1
3
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Simple MAC Transmission Protocol

Proof Follows Derivation of Theorem 2

Note that in the SVD we have single singular value

Recall

(∗) Pr (C ({1}) < R)) =
2R/2 − 1− ρ2
2C

1+ρ2
− 1− ρ2

Substitute ρ2 = 0 in (∗) gives the theorem
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1× 2 Rayleigh MAC with Symmetric Rates

What about a practical scheme?

We would like a scheme for which the outage behaves as Theorem 3:

− log (Pr(Csym < R |Csum)) ≈ − log

(

2 · 2R/2 − 1

2Csum − 1

)

≈ − log
(

2 · 2−(Csum−R/2)
)

(for 2R/2 ≫ 1)

≈ (Csum − R/2)

Recall that for Nr × 2 (Nr ≥ 2), we had:

− log (Pr(Csym < R |Csum)) ≈ (Csum − R)

=⇒ for 1× 2 ML behavior is now changed

Does integer-forcing still get the job done?
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1× 2 Rayleigh MAC with Symmetric Rates

Does the achievable rate (of IF) have

(qualitatively) the same (improved) behaviour?
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Empirical IF

Theorem 3 (converse)

Figure: ML vs. IF for 1× 2 channel with Csum = 10
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1× 2 Rayleigh MAC with Symmetric Rates

Is there a problem with IF?

Remember the MAC-DMT moral...
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Summary and Outlook

Summary

Explicit lower bounds on integer-forcing outage probability
◮ Compound (worst-case) single user Nr × 2 (Nr ≥ 2)
◮ Rayleigh MAC Nr × 2 (Nr ≥ 2) - path to analysis
◮ Rayleigh MAC 1× 2

Outlook

Rayleigh MAC Nr × 2 (Nr ≥ 2) - derive explicit expressions

Rayleigh MAC 1× 2
◮ Can IF performance be improved (to match ML behaviour)?
◮ We believe it can (lessons from MAC-DMT...)

What about Nt > 2?
◮ Same principles are applicable?

Stay tuned...
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Thanks for your attention!
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